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Abstract

We define scoring metrics on separable metric spaces and show that

they are always no coarser than the metrics from which they spring.
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1 Introduction

If one tries to imagine the “simplest” possible metric on a given set X, an

argument could be made for the trivial metric ⌧

c

(x, y) =

8
>><

>>:

c x 6= y

0 x = y

, with

c > 0. What is next simplest? We propose the scoring metric. We first envi-

sion “delegate functions” f

n

: X ! X which associate to each point x 2 X

a point f

n

(x) 2 X. For any two points x, y 2 X, for each n = 1, 2, 3, · · ·

one may compute the score ⌧

an (fn(x), fn(y)) =

8
>><

>>:

a

n

f

n

(x) 6= f

n

(y)

0 f

n

(x) = f

n

(y)

, where

{a
n

}1
n=1 is a non-increasing sequence of positive real numbers such that

1P
i=1

a

i

converges. These scores are summed to produce the scoring function
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⇢(x, y) =
1P
i=1

⌧

ai (fi(x), fi(y)) . In the following we show that if X is a sepa-

rable metric space, it is straightforward to find functions f

n

: X ! X and

sequences {a
i

}1
i=1 such that

1P
i=1

⌧

ai (fi(x), fi(y)) is a metric on X, and that

the induced topology is no coarser than the original topology.

2 Propositions

Let X be a separable metric space with metric �(·, ·). Let {r
i

}1
i=1 be a count-

able dense subset of X with r

i

= r

j

only if i = j. Define f

n

: X ! X as

follows:

f1(x) = r1, (2.1)

and

f

n

(x) =

8
>><

>>:

f

n�1(x) if � (x, f
n�1(x)) 6 �(x, r

n

)

r

n

if �(x, r
n

) < � (x, f
n�1(x))

(2.2)

for n > 1.

Note that

�(x, f
n

(x)) =

8
>><

>>:

�(x, f
n�1(x)) if � (x, f

n�1(x)) 6 �(x, r
n

)

�(x, r
n

) if �(x, r
n

) < � (x, f
n�1(x))

= min(�(x, f
n�1(x)), �(x, rn)),

(2.3)

hence

�(x, f
n

(x)) 6 �(x, r
n

). (2.4)
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Fix ✏ > 0. Since {r
i

}1
i=1 is dense, we can find N > 1 such that �(x, r

N

) < ✏.

Since �(x, f
N

(x)) 6 �(x, r
N

), it follows that �(x, f
N

(x)) < ✏. By induction

on �(x, f
n

(x)) 6 �(x, f
n�1(x)) we get that �(x, f

n

(x)) < ✏ for all n > N.

Thus lim
n!1

f

n

(x) = x.

Let {a
n

}1
n=1 be a non-increasing sequence of positive real numbers such

that
1P
i=1

a

i

converges. Then define ⇢ : X ⇥X ! R as

⇢(x, y) ⌘
1X

i=1

⌧

ai (fi(x), fi(y)) . (2.5)

⇢(·, ·) is well-defined and finite because it is dominated by
1P
i=1

a

i

< 1.

We claim that ⇢(·, ·) is a metric over X, because of the following three

observations:

1.

⇢(x, x) =
1X

i=1

⌧

ai (fi(x), fi(x)) =
1X

i=1

0 = 0; (2.6)

2. If x, y 2 X and x 6= y, then given any integer N , there exists n > N

such that f

n

(x) 6= f

n

(y), since lim
n!1

f

n

(x) = x and lim
n!1

f

n

(y) = y..

Hence ⇢(x, y) > 0 whenever x 6= y;

3. Fix any three points x, y, z 2 X and any positive integer i. If f
i

(x) =

f

i

(z) it follows that ⌧
ai (fi(x), fi(z)) = 0 6 ⌧

ai (fi(x), fi(y))+⌧

ai (fi(y), fi(z)).

If f
i

(x) 6= f

i

(z), we may infer that either f
i

(x) 6= f

i

(y) or f
i

(y) 6= f

i

(z),

hence ⌧

ai (fi(x), fi(y)) = a

i

or ⌧
ai (fi(y), fi(z)) = a

i

, which in turn im-

plies ⌧
ai (fi(x), fi(y)) + ⌧

ai (fi(y), fi(z)) > a

i

> ⌧

ai (fi(x), fi(z)). Hence
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in either case ⌧

ai (fi(x), fi(y)) + ⌧

ai (fi(y), fi(z)) > ⌧

ai (fi(x), fi(z)).

Next recall that ⇢(x, y) =
1P
i=1

⌧

ai (fi(x), fi(y)), so

⇢(x, y) + ⇢(y, z) =
1X

i=1

⌧

ai (fi(x), fi(y)) +
1X

i=1

⌧

ai (fi(y), fi(z))

=
1X

i=1

{⌧
ai (fi(x), fi(y)) + ⌧

ai (fi(y), fi(z))}

>
1X

i=1

⌧

ai (fi(x), fi(z)) = ⇢(x, z).

(2.7)

Thus ⇢(·, ·) is a metric over X.

Proposition 2.1 Suppose x

i

�!
⇢

x. For any integer N > 0, there exists an

integer M > 0 such that f

n

(x
m

) = f

n

(x) whenever m > M and 1 6 n 6 N.

Proof: Choose an integer N > 0. Since x
i

�!
⇢

x, there exists an integer M > 0

such that ⇢(x
m

, x) < a

N

whenever m > M . Now suppose f

n

(x
m

) 6= f

n

(x)

for some m > M and some n such that 1 6 n 6 N . Then ⇢(x
m

, x) =
1P
i=1

fi(xm) 6=fi(x)

a

i

> a

n

> a

N

> ⇢(x
m

, x) for a contradiction. It then follows that

f

n

(x
m

) = f

n

(x) whenever m > M and 1 6 n 6 N.

Proposition 2.2 If a > b then �(x, f
a

(x)) 6 �(x, r
b

).

Proof: From the definition, we earlier inferred that

�(x, f
n

(x)) = min(�(x, f
n�1(x)), �(x, rn)) . This implies �(x, f

n

(x)) 6

�(x, f
n�1(x)), hence by induction �(x, f

a

(x)) 6 �(x, f
b

(x)). Next,
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�(x, f
b

(x)) = min (�(x, f
b�1(x)), �(x, rb)) 6 �(x, r

b

). Combining these re-

sults, we infer �(x, f
a

(x)) 6 �(x, f
b

(x)) 6 �(x, r
b

), and the Proposition is

proved.

Proposition 2.3 If x, y 2 X and x 6= y, then given any integer N > 0,

there exists n > N such that f

n

(x) 6= f

n

(y).

Proof: Note that f
n

(x) �!
�

x and f

n

(y) �!
�

y as n ! 1. Now suppose that

for some N > 0, f
n

(x) = f

n

(y) for all n > N . Then clearly x = lim
�

f

n

(x) =

lim
�

f

n

(y) = y, thus x = y for the contradiction.

Proposition 2.4 For any ✏ > 0 and x 2 X, there exists an integer N > 0

such that if f

j

(x) = f

j

(y) for some j > N and some y 2 X, then �(x, y) < ✏.

Proof: We prove the contraposition. Choose ✏ > 0 and x, y 2 X such

that �(x, y) > ✏. Because (X, �) is separable, we can find positive integers

m,n such that �(x, r
m

) < ✏

2 and �(y, r
n

) < ✏

2 . Let N = max(m,n). Suppose

f

j

(x) = f

j

(y) for some j > N . Then �(x, f
j

(x)) 6 �(x, r
m

) and �(y, f
j

(y)) 6

�(y, r
n

), and hence �(x, y) 6 �(x, f
j

(x)) + �(f
j

(x), f
j

(y)) + �(y, f
j

(y)) <

✏

2 + 0 + ✏

2 = ✏ for a contradiction. Hence f

j

(x) 6= f

j

(y) for every j > N .

Proposition 2.5 If x

i

�!
⇢

x, then x

i

�!
�

x.

Proof: Pick ✏ > 0 and x 2 X. Proposition 2.4 implies that there exists

an integer N > 0 such that if f

j

(x) = f

j

(y) for some j > N and some

y 2 X, then �(x, y) < ✏. Since x

i

�!
⇢

x, Proposition 2.1 implies that there
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exists an integer M > 0 such that f

n

(x
m

) = f

n

(x) whenever m > M and

1 6 n 6 N . In particular, f

N

(x
m

) = f

N

(x) whenever m > M , hence

�(x, x
m

) < ✏ whenever m > M , thus x
i

�!
�

x.

Corollary 2.6 (X, ⇢) is no coarser than (X, �).

Remark Notice that Proposition 2.5 holds regardless of the choice of count-

able dense subset and the choice of non-increasing sequence of positive real

numbers with convergent partial sums.

3 Contact
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